Home Projects Inductive Coupling

The Challenge

Our Client specialises in providing systems that operate in the harsh environments that are found in borehole pipes.

One part of this system is a mechanical valve assembly that sits within a pocket in a pipeline and controls the flow of gas. The environmental conditions and onerous mechanical constraints mean that the valve needs to be replaceable in-situ which makes wired electrical connections for power and communications impractical. They asked Plextek to support them in the development an inductive coupler.

The Approach​

The valve itself is driven by an electric motor and controlled by an electronics module that is packaged within the valve housing. As part of the modelling and coil design, we needed to design a mechanical arrangement to fit within the small space available in the valve assembly, perform electro-magnetic simulations of the coupler to determine effectiveness and iterate to find an optimum solution. We then manufactured a proof-of-concept prototype and measured its real-life performance to validate the simulation results.

The Outcome

Our client have in the past used electromagnetic (inductive) coupling techniques for transferring power and communications across such boundaries. Plextek supported the project through the proof-of-concept phase including drawings of the manufactured proof of concept and the measured the results. We have continued to support our client through a second phase to optimise the efficiency of the inductive coupler at lower powers.

This is one of many inductive coupling projects that we have completed for clients, please contact us for more information.

Contact Plextek

Got a project in mind?

Let’s talk

If you have got a project to discuss, or even just an idea, let's talk


Related Technical Papers

View All
an image of our technical paper
mmWave Imaging Radar

Camera systems are in widespread use as sensors that provide information about the surrounding environment. But this can struggle with image interpretation in complex scenarios. In contrast, mmWave radar technology offers a more straightforward view of the geometry and motion of objects, making it valuable for applications like autonomous vehicles, where radar aids in mapping surroundings and detecting obstacles. Radar’s ability to provide direct 3D location data and motion detection through Doppler effects is advantageous, though traditionally expensive and bulky. Advances in SiGe device integration are producing more compact and cost-effective radar solutions. Plextek aims to develop mm-wave radar prototypes that balance cost, size, weight, power, and real-time data processing for diverse applications, including autonomous vehicles, human-computer interfaces, transport systems, and building security.

an image of our technical paper
Low Cost Millimeter Wave Radio frequency Sensors

This paper presents a range of novel low-cost millimeter-wave radio-frequency sensors that have been developed using the latest advances in commercially available electronic chip-sets. The recent emergence of low-cost, single chip silicon germanium transceiver modules combined with license exempt usage bands is creating a new area in which sensors can be developed. Three example systems using this technology are discussed, including: gas spectroscopy at stand off distances, non-invasive dielectric material characterization and high performance micro radar.

an image of our technical paper
Frequency-Scanning Substrate-Integrated-Waveguide Meanderline Antenna for Radar Applications at 60GHz

This paper describes the design and characterization of a frequency-scanning meanderline antenna for operation at 60 GHz. The design incorporates SIW techniques and slot radiating elements. The amplitude profile across the antenna aperture has been weighted to reduce sidelobe levels, which makes the design attractive for radar applications. Measured performance agrees with simulations, and the achieved beam profile and sidelobe levels are better than previously documented frequency-scanning designs at V and W bands.

an image of our technical paper
A Ku-Band, Low Sidelobe Waveguide Array Employing Radiating T Junctions

The design of a 16-element waveguide array employing radiating T-junctions that operates in the Ku band is described. Amplitude weighting results in low elevation sidelobe levels, while impedance matching provides a satisfactory VSWR, that are both achieved over a wide bandwidth (15.7-17.2 GHz). Simulation and measurement results, that agree very well, are presented. The design forms part of a 16 x 40 element waveguide array that achieves high gain and narrow beamwidths for use in an electronic-scanning radar system.

an image of our technical paper
Sensing Auditory Evoked Potentials with Non-Invasive Electrodes and Low-Cost Headphones

This paper presents a sensor for measuring auditory brainstem responses to help diagnose hearing problems away from specialist clinical settings using non-invasive electrodes and commercially available headphones. The challenge of reliably measuring low level electronic signals in the presence of significant noise is addressed via a precision analog processing circuit which includes a novel impedance measurement approach to verify good electrode contact. Results are presented showing that the new sensor was able to reliably sense auditory brainstem responses using noninvasive electrodes, even at lower stimuli levels.